Publications

A new modulator for digital RF power amplifiers utilizing a wavetable approach

F. Hühn, A. Wentzel and W. Heinrich

Published in:

Int. J. Microwave Wireless Technolog., vol. 9, no. 6, pp. 1251-1260 (2017).

Abstract:

This paper presents for the first time a wavetable-based coding scheme to generate a high-speed binary input signal for digital RF power amplifiers. The approach maximizes the utilization of the time domain handling capabilities of the pulse forming circuit. Key features are a greatly improved output spectrum purity in comparison with common digital modulators, the ability to adjust the modulator to any given pulse forming hardware and a built-in signal correction option that comes without additional computational cost. To give a first impression on the modulators behavior and its possibilities to adapt to different hardware constraints, simulations are carried out for different parameter variations and for different baseband bandwidths. Furthermore, the proposed concept is emulated with an arbitrary waveform generator to gather additional measurement data. For a 5 MHz wideband code division multiple access (WCDMA) signal (6.5 dB peak-to-average power ratio) at 900 MHz, an error vector magnitude (EVM) of 0.26% and better than >58 dB adjacent channel leakage ratio (ACLR) were recorded. To the authors’ knowledge, these are the best values achieved so far for a single-bit coding scheme without digital predistortion that still maintains maximum power coding efficiency.

Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany

Copyright © Cambridge University Press and the European Microwave Association 2017. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the Cambridge University Press and the European Microwave Association.

Full version in pdf-format.