Publications

STE-QUEST-test of the universality of free fall using cold atom interferometry

D.N. Aguilera1, H. Ahlers2, B. Battelier3, A. Bawamia4, , A. Bertoldi3, R. Bondarescu5, K. Bongs6, P. Bouyer3, C. Braxmaier1,7, L. Cacciapuoti8, C. Chaloner9, M. Chwalla10, W. Ertmer2, M. Franz11, N. Gaaloul2, M. Gehler8, D. Gerardi10, L. Gesa12, N. Gürlebeck7, J. Hartwig2, M. Hauth13, O. Hellmig14, W. Herr2, S. Herrmann7, A Heske8, A Hinton6, P. Ireland9, P. Jetzer5, U. Johann10, M. Krutzik13, A. Kubelka7, C. Lämmerzahl7, A. Landragin15, I. Lloro12, D. Massonnet16, I. Mateos12, A Milke7, M. Nofrarias12, M. Oswald11, A. Peters13, K. Posso-Trujillo2, E. Rasel2, E. Rocco6, A. Roura17, J Rudolph2, W. Schleich17, C. Schubert2, T. Schuldt1,11, S Seidel2, K. Sengstock14, C.F. Sopuerta12, F. Sorrentino18, D Summers9, G.M. Tino18, C. Trenkel19, N. Uzunoglu20, W. von Klitzing21, R. Walser22, T. Wendrich2, A. Wenzlawski14, P. Weßels23, A. Wicht4, E. Wille8, M. Williams19, P. Windpassinger14 and N. Zahzam24

Published in:

Class. Quantum Grav., vol. 31, no. 115010 (2014).

Abstract:

The theory of general relativity describes macroscopic phenomena driven by the influence of gravity while quantum mechanics brilliantly accounts for microscopic effects. Despite their tremendous individual success, a complete unification of fundamental interactions is missing and remains one of the most challenging and important quests in modern theoretical physics. The spacetime explorer and quantum equivalence principle space test satellite mission, proposed as a medium-size mission within the Cosmic Vision program of the European Space Agency (ESA), aims for testing general relativity with high precision in two experiments by performing a measurement of the gravitational redshift of the Sun and the Moon by comparing terrestrial clocks, and by performing a test of the universality of free fall of matter waves in the gravitational field of Earth comparing the trajectory of two Bose-Einstein condensates of 85Rb and 87Rb. The two ultracold atom clouds are monitored very precisely thanks to techniques of atom interferometry. This allows to reach down to an uncertainty in the Eötvös parameter of at least 2 × 10-15. In this paper, we report about the results of the phase A mission study of the atom interferometer instrument covering the description of the main payload elements, the atomic source concept, and the systematic error sources.

1 German Aerospace Center (DLR), Institute for Space Systems, Robert-Hooke-Str. 7, D-28359 Bremen, Germany
2 Institute of Quantum Optics, Leibniz University Hanover, Welfengarten 1, D-30167 Hanover, Germany
3 Laboratoire Photonique, Numérique et Nanosciences-LP2N Université Bordeaux-IOGS-CNRS: UMR F-5298, Talence, France
4 Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Straße 4, D-12489 Berlin, Germany
5 Institute of Theoretical Physics, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
6 School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
7 Center of Applied Space Technology and Microgravity (ZARM), University Bremen, Am Fallturm, D-28359 Bremen, Germany
8 ESA-European Space Agency, ESTEC, Keplerlaan 1, 2200 AG Noordwijk ZH, Netherlands
9 SEA House, Bristol Business Park, Coldharbour Lane, Bristol BS16 1EJ, UK
10 Astrium GmbH-Satellites, Claude-Dornier-Str., D-88090 Immenstaad, Germany
11 Institute of Optical Systems, University of Applied Sciences Konstanz (HTWG), Brauneggerstr. 55, D-78462 Konstanz, Germany
12 Institut de Ciències de l'Espai (CSIC-IEEC), Campus UAB, Facultat de Ciències, E-08193 Bellaterra, Spain
13 Institute for Physics, Humboldt-University Berlin, Newtonstr. 15, D-12489 Berlin, Germany
14 Institute of Laser-Physics, University of Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany
15 SYRTE- Observatoire de Paris, 61 avenue de l'obsevatoire, F-75014 Paris, France
16 CNES-Centre national d'etudes spatiales, 2 place Maurice Quentin, F-75039 Paris Cedex 01, France
17 Department of Quantum Physics, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
18 Dipartimento di Fisica e Astronomia and LENS Laboratory, Università di Firenze-INFN, Sezione di Firenze-via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze), Italy
19 Astrium Ltd, Gunnels Wood Road, Stevenage SGI 2AS, UK
20 National Technical University of Athens, 28 Oktovrio 42, 10682 Athens, Greece
21 Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, PO Box 1527, 6R-71110 Heraklion, Greece
22 Institut für Angewandte Physik, Technische Universität Darmstadt, Hochschulstr. 4a, D-64289 Darmstadt, Germany
23 LZH-Laser Zentrum Hannover e.V., Hollerithallee 8, D-30419 Hannover, Germany
24 ONERA-Office National d'Etude et de Recherches Aerospatiales, Chemin de la Huniere, F-91761 Palaiseau, France

Keywords:

atom interferometry, equivalence principle, cold atoms, Bose-Einstein condensates, microgravity, quantum gravity, space physics

© 2014 IOP Publishing Ltd. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IOP Publishing Ltd.

Full version in pdf-format.