High-power laser drivers for nanosecond pulses

Lasers generating short optical pulses with high peak power and pulse widths in the range from 10 ps to 100 ns are key components for a broad range of applications. These include LiDAR imaging as well as fluorescence spectroscopy and micromachining systems. In addition to the power and pulse width specs, high repetition rates, good beam quality, and high energy efficiency are required.

Gain switching of the laser diode, i.e., switching on and off the injected current, offers a simple, cost-effective, and power-efficient possibility to generate optical pulses with widths down to at least 0.5 ns. However, to reach optical powers in the high watt range, electrical pulses with current amplitudes beyond 10 A must be handled. The main challenges in realizing such drivers are twofold:

  • to have fast-switching transistors with the appropriate current capabilities and
  • to drive the short current pulses through the board and laser parasitics into the internal diode.

FBH’s combined expertise in both laser diodes and high-speed power electronics forms the ideal setting for developing short-pulse laser components. Its modules with integrated GaN-based drivers offer unprecedented performance in terms of current and pulse width, from 800 A at 4 ns to more than 30 A at 0,4 ns.