Time-domain optics for atomic quantum matter

S. Kanthak1,2, M. Gebbe3, M. Gersemann4, S. Abend4, E.M. Rasel4 and M. Krutzik1,2

Published in:

New J. Phys., vol. 23, no. 9, pp. 093002, doi:10.1088/1367-2630/ac1285 (2021).

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Abstract:

We investigate time-domain optics for atomic quantum matter. Within a matter-wave analog of the thin-lens formalism, we study optical lenses of different shapes and refractive powers to precisely control the dispersion of Bose-Einstein condensates. Anharmonicities of the lensing potential are incorporated in the formalism with a decomposition of the center-of-mass motion and expansion of the atoms, allowing to probe the lensing potential with micrometer resolution. By arranging two lenses in time formed by the potentials of an optical dipole trap and an atom-chip trap, we realize a magneto-optical matter-wave telescope. We employ this hybrid telescope to manipulate the expansion and aspect ratio of the ensembles. The experimental results are compared to numerical simulations that involve Gaussian shaped potentials to accommodate lens shapes beyond the harmonic approximation.

1 Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
2 Joint Lab Integrated Quantum Sensors, Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Straße 4, 12489 Berlin, Germany
3 Zentrum für Angewandte Raumfahrt und Mikrogravitation (ZARM), Universität Bremen, Am Fallturm 2, 28359 Bremen, Germany
4 Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany

Keywords:

Bose-Einstein condensates, ultra-cold atoms, matter-wave lensing, time-domain optics, optical dipole traps, atom-chip traps, matter-wave telescope