Interferometry with Bose-Einstein Condensates in Microgravity

H. Müntinga1, H. Ahlers2, M. Krutzik3, A. Wenzlawski4, S. Arnold5, D. Becker2, K. Bongs6, H. Dittus7, H. Duncker4, N. Gaaloul2, C. Gherasim8, E. Giese5, C. Grzeschik3, T.W. Hänsch9, O. Hellmig4, W. Herr2, S. Herrmann1, E. Kajari5,10, S. Kleinert5, C. Lämmerzahl1, W. Lewoczko-Adamczyk3, J. Malcolm6, N. Meyer6, R. Nolte8, A. Peters3,11, M. Popp2, J. Reichel12, A. Roura5, J. Rudolph2, M. Schiemangk3,11, M. Schneider8, S.T. Seidel2, K. Sengstock4, V. Tamma5, T. Valenzuela6, A. Vogel4, R. Walser8, T. Wendrich2, P. Windpassinger4, W. Zeller5, T. van Zoest7, W. Ertmer2, W.P. Schleich5, and E.M. Rasel2

Published in:

Phys. Rev. Lett., vol. 110, no. 093602 (2013).

© 2013 American Physical Society. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the American Physical Society.

Abstract:

Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Because of their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this Letter we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far field of a double slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.

1 ZARM, Universität Bremen, Am Fallturm, 28359 Bremen, Germany
2 Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
3 Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
4 Institut für Laser-Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
5 Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
6 Midlands Ultracold Atom Research Centre, Birmingham B15 2TT, United Kingdom
7 DLR Institut für Raumfahrtsysteme, Robert-Hooke-Straße 7, 28359 Bremen, Germany
8 Institut für Angewandte Physik, Technische Universität Darmstadt, Hochschulstraße 4A, 64289 Darmstadt, Germany
9 Max-Planck-Institut für Quantenoptik und Fakultät für Physik der Ludwig-Maximilians-Universität München, Schellingstraße 4, 80799 München, Germany
10 Theoretische Physik, Universität des Saarlandes, Campus E2 6, D-66041 Saarbrücken, Germany
11 Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Straße 4, 12489 Berlin, Germany
12 Laboratoire Kastler Brossel, ENS/UPMC-Paris 6/CNRS, 24 rue Lhomond, 75005 Paris, France

PACS numbers:

42.50.Gy, 03.75.Dg, 04.80.Cc, 37.25.+k