Improving AlN Crystal Quality and Strain Management on Nanopatterned Sapphire Substrates by High-Temperature Annealing for UVC Light-Emitting Diodes

S. Hagedorn1, S. Walde1, N. Susilo2, C. Netzel1, N. Tillner3,4, R.-S. Unger1, P. Manley5, E. Ziffer2, T. Wernicke2, C. Becker5, H.-J. Lugauer3, M. Kneissl1,2, and M. Weyers1

Published in:

phys. stat. sol. (a), vol. 217, no. 7, Special Issue: Nitride Semiconductors, pp. 1900796, DOI: 10.1002/pssa.201900796 (2020).

Copyright © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Abstract:

Herein, AlN growth by metalorganic vapor-phase epitaxy on hole-type nanopatterned sapphire substrates is investigated. Cracking occurs for an unexpectedly thin-layer thickness, which is associated to altered nucleation conditions caused by the sapphire pattern. To overcome the obstacle of cracking and at the same time to decrease the threading dislocation density by an order of magnitude, high-temperature annealing (HTA) of a 300 nm-thick AlN starting layer is successfully introduced. By this method, 800 nm-thick, fully coalesced and crack-free AlN is grown on 2 in. nanopatterned sapphire wafers. The usability of such templates as basis for UVC light-emitting diodes (LEDs) is furthermore proved by subsequent growth of an UVC-LED heterostructure with single peak emission at 265 nm. Prerequisites for the enhancement of the light extraction efficiency by hole-type nanopatterned sapphire substrates are discussed.

1 Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany
2 Institute of Solid State Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
3 Osram Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg, Germany
4 Institute of Semiconductor Technology, Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany
5 Nano-SIPPE, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 16, 12489 Berlin, Germany