Publikationen

Controlled Formation of Skyrmion Bags

L.-M. Kern1, V.M. Kuchkin2, V. Deinhart3,4, C. Klose1, T. Sidiropoulos1, M. Auer1, S. Gaebel1, K. Gerlinger1, R. Battistelli4,5, S. Wittrock4, T. Karaman5, M. Schneider1, C.M. Günther6, D. Engel1, I. Will1, S. Wintz4, M. Weigand4, F. Büttner4,5, K. Höflich3, S. Eisebitt1,7, and B. Pfau1

Published in:

Adv. Mater., vol. 37, no. 29, pp. 2501250, doi:10.1002/adma.202501250 (2025).

Abstract:

Topologically non-trivial magnetic solitons are complex spin textures with a distinct single-particle nature. Although magnetic skyrmions, especially those with unity topological charge, have attracted substantial interest due to their potential applications, more complex topological textures remain largely theoretical. In this work, the stabilization of isolated higher-order skyrmion bags beyond the prototypical π-skyrmion in ferromagnetic thin films is experimentally demonstrate, which has posed considerable challenges to date. Specifically, controlled generation of skyrmionium (2π-skyrmion), target skyrmion (3π-skyrmion), and skyrmion bags (with variable topological charge) are achieved through the introduction of artificially engineered anisotropy defects via local ion irradiation. They act as preferential sites for the field- or laser-induced nucleation of skyrmion bags. Remarkably, ultrafast laser pulses achieve a substantially higher conversion rate transforming skyrmions into higher-order skyrmion bags compared to their formation driven by magnetic fields. High-resolution x-ray imaging enables direct observation of the resulting skyrmion bags. Complementary micromagnetic simulations reveal the pivotal role of defect geometry–particularly diameter–in stabilizing closed-loop domain textures. The findings not only broaden the experimental horizon for skyrmion research, but also suggest strategies for exploiting complex topological spin textures within a unified material platform for practical applications.

1 Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
2 Department of Physics and Materials Science University of Luxembourg, Luxembourg L-1511, Luxembourg
3 Ferdinand-Braun-Institut (FBH), 12489 Berlin, Germany
4 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany
5 Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
6 Technische Universität Berlin, Zentraleinrichtung Elektronenmikroskopie, 10623 Berlin, Germany
7 Technische Universität Berlin, Institut für Optik und Atomare Physik, 10623 Berlin, Germany

Keywords:

higher-order skyrmions, ion irradiation, laser-induced nucleation, skyrmion bags, X-ray imaging

© 2025 The Author(s). Advanced Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Rightslink® by Copyright Clearance Center

Full version in pdf-format.