1. Forschung
  2. Publikationen
  3. Technology roadmap for cold-at ...

Publikationen

Wissenschaftliche Beiträge

 zu Konferenzen finden Sie übrigens auch bei den Terminen.

Technology roadmap for cold-atoms based quantum inertial sensor in space

S. Abend1, B. Allard2, A.S. Arnold3, T. Ban4, L. Barry5, B. Battelier6, A. Bawamia7, Q. Beaufils8, S. Bernon6, A. Bertoldi6, A. Bonnin9, P. Bouyer6,10,11,12,13, A. Bresson9, O.S. Burrow3, B. Canuel6, B. Desruelle13, G. Drougakis14, R. Forsberg15, N. Gaaloul1, A. Gauguet2, M. Gersemann1, P.F. Griffin3, H. Heine1, V.A. Henderson16, W. Herr1,17, S. Kanthak18, M. Krutzik7,18, M.D. Lachmann1, R. Lammegger19, W. Magnes20, G. Mileti21, M.W. Mitchell22, S. Mottini23, D. Papazoglou14, F. Pereira dos Santos24, A. Peters16, E. Rasel1, E. Riis3, C. Schubert1,17, S.T. Seidel25, G.M. Tino26, M. Van Den Bossche23, W. von Klitzing14, A. Wicht7, M. Witkowski27, N. Zahzam9, and M. Zawada27

Published in:

AVS Quantum Sci., vol. 5, no. 1, pp. 019201, doi:10.1116/5.0098119 (2023).

Abstract:

Recent developments in quantum technology have resulted in a new generation of sensors for measuring inertial quantities, such as acceleration and rotation. These sensors can exhibit unprecedented sensitivity and accuracy when operated in space, where the free-fall inter- rogation time can be extended at will and where the environment noise is minimal. European laboratories have played a leading role in this field by developing concepts and tools to operate these quantum sensors in relevant environment, such as parabolic flights, free-fall towers, or sounding rockets. With the recent achievement of Bose–Einstein condensation on the International Space Station, the challenge is now to reach a technology readiness level sufficiently high at both component and system levels to provide “off the shelf” payload for future genera- tions of space missions in geodesy or fundamental physics. In this roadmap, we provide an extensive review on the status of all common parts, needs, and subsystems for the application of atom-based interferometers in space, in order to push for the development of generic tech- nology components.

1 Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
2 Laboratoire Collisions Agrégats Réactivité (LCAR), Université Paul Sabatier, Bât. 3R1, 118 route de Narbonne, 31062 Toulouse, Cedex 09, France
3 Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
4 Institute of Physics, Bijeni ka cesta 46, 10000 Zagreb, Croatia
5 School of Electronic Engineering, Dublin City University, Dublin 9, Ireland
6 LP2N, Laboratoire Photonique, Numérique, Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, F-33400 Talence, France
7 Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, D-12489 Berlin, Germany
8 LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, 61 avenue de l’Observatoire, 75014 Paris, France
9 DPHY, ONERA, Université Paris-Saclay, Chemin de la Hunière, BP 80100, 91123 Palaiseau, France
10 Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
11 QuSoft, Science Park 123, 1098XG Amsterdam, The Netherlands
12 Eindhoven University of Technology, Eindhoven, The Netherlands
13 iXblue, Institut d’Optique d’Aquitaine, rue François Mitterrand, 33400 Talence, France
14 Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
15 National Space Institute (DTU-Space), DTU Bldg 327, Elektrovej, DK-2800 Lyngby, Denmark
16 AG Optische Metrologie, Institut für Physik, Humboldt- Universität zu Berlin, Newtonstraße 15, D-12489 Berlin, Germany
17 Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Satellitengeodäsie und Inertialsensorik, Callinstr. 30b, 30167 Hannover, Germany
18 Joint Lab Integrated Quantum Sensors, Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, D-12489 Berlin, Germany
19 Graz University of Technology, Rechbauerstraße 12, 8010 Graz, Austria
20 Austrian Academy of Sciences, Space Research Institute, Schmiedlstraße 6, 8042 Graz, Austria
21 Laboratoire Temps-Fréquence (LTF), Institut de Physique, Université de Neuchâtel, 2000 Neuchâtel, Switzerland
22 ICFO-The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, 3, 08860 Castelldefels, Barcelona, Spain and ICREA - Instituciò Catalana de Recerca i Estudis Avanc ̧ats, 08010 Barcelona, Spain
23 Thales Alenia Space, 26 Av. Jean François Champollion, 31100 Toulouse, France
24 LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, 61 avenue de l’Observatoire, 75014 Paris, France
25 Airbus Defence and Space GmbH, Robert-Koch-Straße 1, 82024 Taufkirchen, Germany
26 Dipartimento di Fisica e Astronomia and LENS Laboratory, Universitè degli Studi di Firenze, Istituto Nazionale di Fisica Nucleare, Sezione di Firenze-via Sansone 1, I-50019 Sesto Fiorentino (Firenze), Italy
27 Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5, PL-87-100 Toruń, Poland

© Author(s) 2023. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/5.0098119

Full version in pdf-format.