Root-Cause Analysis of Peak Power Saturation in Pulse-Pumped 1100 nm Broad Area Single Emitter Diode Lasers
X. Wang, P. Crump, H. Wenzel, A. Liero, T. Hoffmann, A. Pietrzak, C.M. Schultz, A. Klehr, A. Ginolas, S. Einfeldt, F. Bugge, G. Erbert, and G. Tränkle
Published in:
IEEE J. Quantum Electron., vol. 46, no. 5, pp. 658-665 (2010).
Abstract:
Many physical effects can potentially limit the peak achievable output power of single emitter broad area diode lasers under high current, pulse-pumped operation conditions. Although previous studies have shown reliable operation to high pump levels (240 A, 300 ns, and 1 kHz), power was found to saturate. We present here results of a systematic study to unambiguously determine the sources of this power saturation. A combination of detailed measurements and finite element device simulation were used for the diagnosis.We find that the measured power saturation is dominated by electron leakage caused by band bending at high bias due to the low mobility of the ptype waveguide. However, the power saturation is only fully reproduced when longitudinal spatial hole-burning is included. Higher powers are expected to be achieved if higher energy barriers and lower confinement factors are used to mitigate leakage and longitudinal hole-burning, respectively.
Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Straße 4, D-12489 Berlin, Germany
Index Terms:
Diode laser, high power, short pulse, simulation.
© Copyright 2010 IEEE - All Rights Reserved. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Full version in pdf-format.