Publikationen

Continuously current-tunable, narrow line-width miniaturized external cavity diode laser at 633 nm

B. Sumpf, A. Bawamia, G. Blume, B. Eppich, A. Ginolas, S. Spießberger, M. Thomas, G. Erbert

Published in:

Proc. SPIE, vol. 8277, no. 827714 (2012).

Abstract:

Red emitting diode lasers with a narrow spectral line-width and continuous tuning are requested as light sources for interferometric measurements with nm-accuracy. Tuning ranges of about 25 GHz together with a spectral line-width smaller than 10 MHz are necessary.
A current-tunable miniaturized 633 nm external cavity diode laser (ECDL) will be presented. The resonator is formed without moving parts between the front facet of a semiconductor gain medium and a reflection Bragg grating (RBG). The RBG has a high reflectivity larger than 95% in a small spectral bandwidth, which is approximately equal to the targeted tuning range. Within this bandwidth, the ECDL is tunable by changing the injection current of the gain medium. The length of the resonator is selected so short, that the distance between the laser modes is larger than the tuning range. Herewith, single mode operation should be guaranteed. The device is mounted on an aluminum nitride bench with a footprint of 5 mm × 10 mm. ECDLs using gain media with different front facet reflectivities of 30% and 70% will be compared. Moreover, results for a device encapsulated in a silicon based gel will be presented.
For a device with 30% front facet reflectivity in air, a maximal output power of 10 mW was achieved. The tuning range without any mode-hops was 34 pm, i.e. 25 GHz. The line-width was smaller than 10 MHz. The emitted beam was approximately diffraction limited with a M2 ≈ 1.1 in both directions.

Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Straße 4, D-12489 Berlin, Germany

Keywords:

Tunable diode lasers, External Cavity Lasers, Narrow line-width.

© 2012 COPYRIGHT SPIE--The International Society for Optical Engineering. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the SPIE.

Full version in pdf-format.