Literaturverzeichnis

[1] P. B. Johns, R. L. Beurle, Numerical Solutions of 2-Dimensional Scattering Problems using a Transmission-Line Matrix, Proc. IEEE Vol. 118, Nr. 9, September 1971, S. 1203-1208.
[2] P. B. Johns, A Symmetrical Condensed Node for the TLM-Method, IEEE Trans. Microwave Theory Tech., MTT-35, Nr. 4, April 1987, S. 379-377.
[3] W. J. R. Hoefer, The Transmission-Line-Matrix Method - Theory and Applications, IEEE Trans. Microwave Theory Tech., MTT-35, Nr. 4, Oktober 1985, S. 882-893.
[4] W. J. R. Hoefer, The Transmission Line Matrix (TLM) Method, Kapitel 8 in Numerical Techniques for Microwave and Millimeter Wave Passive Structures, herausgegeben von T. Itho, J. Wiley, New York, 1989, S. 496-591.
[5] S. Akhtarzad, P. B. Johns, The solution of Maxwell's equations in three space dimensions and time by the TLM method of numerical analysis, Proc. IEE, vol. 122, no. 12, Dezember 1975, S. 1344-1348.
[6] P. Saguet, The 3d Transmission-Line Matrix Method: Theory and Comparison of the Processes, Int. Journal of Numeric Modelling, Electronic Networks, Devices and Fields, Nr. 2, 1989, S. 191-201.
[7] S. Hein, Consistent finite difference modelling of Maxwell's equations with lossy symmetrical condensed TLM node, Int. Journal of Numeric Modelling, Electronic Networks, Devices and Fields, Nr. 6, 1993, S. 207-220.
[8] M. Krumpholz, P. Russer, A Field Theoretical Derivation of TLM, IEEE Trans. Microwave Theory Tech., MTT-42, Nr. 9, September 1994, S. 1660-1668.
[9] M. Krumpholz, Über die Grundlagen der TLM-Methode, wissenschaftl. Mitteilungen, Ferdinand-Braun-Instititut für Höchstfrequenztechnik Berlin, Band 1, 1994.
[10] R. Scaramuzza, A. J. Lowery, Hybrid Symmetrical Condensed Node for the TLM Method, Electronics Letters, Vol 26, Nr. 23, Nov. 1990, S. 1947-1948.
[11] K. S. Kunz, R. J. Luebbers, The finite difference time domain method for electromagnetics, CRC Press, Boca Raton, 1993.
[12] K. S. Yee, Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media, IEEE Trans. Antennas Prop., AP-14, Nr. 3, Mai 1966, S. 302-307.
[13] G. Mur, Absorbing boundary conditions for finite-difference approximation of the time-domain electromagnetic-field equations, IEEE Trans. Electromagn. Compat., Nr. 23, 1981, S. 1073-1077.
[14] G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Differnce Methods, Oxford University Press, 3. Auflage, Oxford, 1993.
[15] P. Russer, M. Krumpholz, The Hilbert Space Formulation of the TLM Method, Int. Journal of Numeric Modelling, Electronic Networks, Devices and Fields, Nr. 6, 1993, S. 29-45.
[16] J. Mlakar, Circuit Model for a Symmetrical Condensed TLM Node, Int. Journal of Numeric Modelling, Electronic Networks, Devices and Fields, Nr. 6, 1993, S. 183-193.
[17] H. Yin, R. Vahldieck, The Frequency-Domain TLM Method - A New Concept, IEEE Trans. Microwave Theory Tech., MTT-40, Dezember 1992, S. 2207-2218.
[18] B. Bader, P. Russer, Modelling of edges and corners in the alternating transmission line matrix (ATLM) scheme, IEE Electronics Letters, Vol. 32, Nr. 20, Sept. 1996, S. 1897-1898.
[19] B. Bader, P. Russer, Modelling of Planar Microwave Circuits Using the Alternating Transmission Line Matrix (ATLM) Scheme, Proc. PIERS 95, 24.-28. Juli 1995, Seattle, S. 997.
[20] B. Bader, P. Russer, Simulations of Coplanar Waveguide Circuits with the Alternating Transmission Line Matrix Scheme (ATLM), Proc. PIERS 96, 8.-12. Juli 1996, Innsbruck, S. 328.
[21] B. Bader, P. Russer, Modelling of Coplanar Waveguide Discontinuities using the Alternating Transmission Line Matrix (ATLM) Scheme, Proc. ACES 96, 18.-22. März 1996, Monterey, S. 310-316.
[22] P. Russer, B. Bader, The Alternating Transmission Line Matrix (ATLM) Scheme, Proc. MTT-Symposium, Orlando, 16.-20. Mai 1995, S. 19-22.
[23] M. Krumpholz, P. Russer, On the Advantages of ATLM over Conventional TLM, Proc. ACES 96, Monterey, 18.-22. März 1996 S. 238-245.
[24] P. Russer, The Alternating Rotated Transmission Line Matrix (ARTLM) Scheme, Electromagnetics, Vol. 16, Nr. 5, Sept.-Okt. 1996, S. 537-551.
[25] S. Lindenmeier, P. Russer, The alternating rotated TLM scheme (ARTLM) for fast simulations in time domain, European Microwave Symposium Digest, Prag 1996, Vol. 1, S. 447-451.
[26] D. R. Lynch, K. D. Paulsen, Origin of Vector Parasites in Numerical Maxwell Solution, IEEE Trans. Microwave Theory Tech., MTT-39, Nr. 3, März 1991, S. 383-394.
[27] M. Krumpholz, P. Russer, Discrete Time-Domain Green's Functions for Three-Dimensional TLM-Modelling of the Radiating Boundary Conditions, Proc. ACES 93, Monterey, März 1993, S 458-466.
[28] M. Krumpholz, B. Bader, P. Russer, On the Theory of Discrete TLM Green's Functions in Three-Dimensional TLM, IEEE Trans. Microwave Theory Tech., MTT-43, Nr. 7, Juli 1995, S. 1472-1483.
[29] W. J. R. Hoefer, The Discrete Time Domain Green's Function or John's Matrix - a new powerful Concept in Transmission Line Modelling, Int. Journal of Numeric Modelling, Electronic Networks, Devices and Fields, Nr. 2, 1989, S. 212-225.
[30] Z. Chen, M. M. Ney, W. J. R. Hoefer, A New Finite-Difference Time-Domain Formulation and its Equivalence with the TLM Symmetrical Condensed Node, IEEE Trans. Microwave Theory Tech., MTT-39, 1991, S. 2160-2169.
[31] C. Eswarappa, W. J. R. Hoefer, Implementation of Berenger absorbing boundary conditions in TLM by interfacing FDTD perfectly matched layers, Electronics Letters, Band 31, Heft 15, Juli 1995, S. 1264-1266.
[32] J.-P. Berenger, A Perfectly Matched Layer for the Absorption of Electromagnetics Waves, Journal of Computational Physics, Nr 114, 1994, S. 185-200.
[33] R. Mittra, Ü. Pekel, A New Look at the Perfectly Matched Layer (PML) Concept for the Reflectionless Absorption of Electromagnetic Waves, IEEE Microwave an Guided Wave Letters, Vol. 5, Nr. 3, März 1995, S. 84-86.
[34] L. Cascio, G. Tardioli, T. Rozzi, W. J. R. Hoefer, A Quasi-Static Correction of a Knife Edge Corner in the TLM Algorithm, Proc. 12th ACES, Monterey, 18.-22. März 1996 S. 317-324.
[35] L. Cascio, G. Tardioli, T. Rozzi, W. J. R. Hoefer, A Quasi-Static Modification of TLM at Knife Edge and 90° Wedge Singularities, Proc. IEEE MTT-Symposium, San Francisco, 17.-21. Juni 1996, S. 443-446.
[36] M. Krumpholz, P. Russer, A Generalized Method for the Calculation of TLM Dispersion Relations, Proc. 23. EMC, Madrid, Sep. 1993.
[37] M. Krumpholz, P. Russer, On the Dispersion in TLM and FDTD, IEEE Trans. Microwave Theory Tech., MTT-42, Nr. 7, Aug. 1994, S. 1275-1279.
[38] C. Huber, M. Krumpholz, P. Russer, Dispersion in Anisotropic Media Modeled by Three-Dimensional TLM, IEEE Trans. Microwave Theory Tech., MTT-43, Nr. 6, Aug. 1995, S. 1923-1934.
[39] J. S. Nielsen, W. J. R. Hoefer, A Complete Dispersion Analysis of the Condensed Node TLM Mesh, IEEE Trans. Magnetics, Vol. 27, Nr. 5, Sep. 1991, S. 3982-3985.
[40] S. Lindenmeier, B. Isele, R. Weigel, P. Russer, Anregungen für symmetrisch kondensierte TLM-Knoten zur Vermeidung störender Gittermoden, Kleinheubacher Berichte 1995, Band 38, S. 317-326.
[41] B. Bader, M. Krumpholz, P. Russer, Current Sources in TLM, Proc. IEEE Antennas and Propagation, International Symposium, 19.-24. Juni 1994, Seattle, S. 1110-1115.
[42] L. Roselli, B. Bader, W. Heinrich, Comparison of Finite-Difference and Transmission-Line Matrix Methods Used for S-Parameter Analysis, Proc. MIKON Conference 94, 30. Mai - 2. Juni 1994, Ksiaz, Polen , S. 597-605.
[43] M. Righi, W. J. R. Hoefer, B. Bader, R. Doerner, P. Russer, Lumped-Element Equivalent-Circuit Parameters Extraction of Coplanar MMIC Components via TLM Simulation, Proc. MIOP 95, 30. Mai - 1. Juni 1995, Sindelfingen, S. 253-257.
[44] V. Trenkic, C. Christopoulos, T. M. Benson, New Symmetrical Super-Condensed Node for the TLM Method, Electronics Letters, Vol. 30, Nr. 4, Feb. 1994, S. 329-330.
[45] V. Trenkic, C. Christopoulos, T. M. Benson, Generally Graded TLM Mesh Using the Symmetrical Super-Condensed Node, Electronics Letters, Vol. 30, Nr. 10, Mai 1994, S. 795-797.
[46] R. Schmidt, P. Russer, Modeling of Cascaded Coplanar Waveguide Discontinuities by the Mode-Matching Approach, IEEE Trans. Microwave Theory Tech., MTT-43, Nr. 12, Dez. 1995, S. 2910-2917.
[47] R. F. Harrington, Field Computation by Moments Methods, Malabar, Robert E. Krieger Publishing, 1982.
[48] P. Russer, Evaluation of the S-Matrix of Microwave Circuits with General Topology, Archiv für Elektronik und Übertragungstechnik, AEÜ, Vol. 48, No. 6, 1994, S. 347-350.
[49] P. Russer, Hochfrequenztechnik 1, Vorlesung an der Technischen Universität München, Lehrstuhl für Hochfrequenztechnik an der TU München, dritte Auflage 1984.
[50] I. Stakgold, Green's Functions and Boundary Value Problems, John Wiley & Sons, 1979.
[51] P.-B. Zhou, Numerical Analysis of Electromagnetic Fields, Springer Verlag, Berlin Heidelberg, 1993.
[52] J. A. Dobrowolski, Introduction to Computer Methods for Microwave Circuit Analysis and Design, Boston, London, Artech House, 1991.
[53] R. E. Collin, Field Theory of Guided Waves, 2. Aufl., New York, IEEE Press Inc., 1991.
[54] R. E. Collin, Foundation for Microwave Engineering, 2. Aufl., McGraw-Hill Series in Electrical Engineering, 1992.
[55] J. J. Barton, L. R. Nackman, Scientific and Engineering C++, Addison-Wesley Publishing Company, 1995.
[56] H. Marko, Methoden der Systemtheorie, Berlin, Heidelberg, New York, Springer-Verlag, 1986.
[57] R. Zurmühl, S. Falk, Matrizen und ihre Anwendungen, Berlin, Heidelberg, New York, Tokyo, Springer-Verlag, 1986.
 


vorheriger Abschnitt
© 1997   Bernhard Bader
zurück zum Inhaltsverzeichnis